Information theoretic regularization in diffuse optical tomography.
نویسندگان
چکیده
Diffuse optical tomography (DOT) retrieves the spatially distributed optical characteristics of a medium from external measurements. Recovering the parameters of interest involves solving a nonlinear and highly ill-posed inverse problem. This paper examines the possibility of regularizing DOT via the introduction of a priori information from alternative high-resolution anatomical modalities, using the information theory concepts of mutual information (MI) and joint entropy (JE). Such functionals evaluate the similarity between the reconstructed optical image and the prior image while bypassing the multimodality barrier manifested as the incommensurate relation between the gray value representations of corresponding anatomical features in the two modalities. By introducing structural information, we aim to improve the spatial resolution and quantitative accuracy of the solution. We provide a thorough explanation of the theory from an imaging perspective, accompanied by preliminary results using numerical simulations. In addition we compare the performance of MI and JE. Finally, we have adopted a method for fast marginal entropy evaluation and optimization by modifying the objective function and extending it to the JE case. We demonstrate its use on an image reconstruction framework and show significant computational savings.
منابع مشابه
An Efficient Method for Model Reduction in Diffuse Optical Tomography
We present an efficient method for the reduction of model equations in the linearized diffuse optical tomography (DOT) problem. We first implement the maximum a posteriori (MAP) estimator and Tikhonov regularization, which are based on applying preconditioners to linear perturbation equations. For model reduction, the precondition is split into two parts: the principal components are consid...
متن کاملAnisotropic diffusion regularization methods for diffuse optical tomography using edge prior information
Diffuse optical tomography (DOT) is a non-invasive functional imaging modality that aims to image the optical properties of biological organs. The forward problem of the light propagation of DOT can be modelled as a diffusion process and is expressed as a differential diffusion equation with boundary conditions. The solution of the DOT inverse problem can be formulated as a minimization of some...
متن کاملModel-resolution based regularization improves near infrared diffuse optical tomography.
Diffuse optical tomographic imaging is known to be an ill-posed problem, and a penalty/regularization term is used in image reconstruction (inverse problem) to overcome this limitation. Two schemes that are prevalent are spatially varying (exponential) and constant (standard) regularizations/penalties. A scheme that is also spatially varying but uses the model information is introduced based on...
متن کاملImage reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm.
We present an image reconstruction method for diffuse optical tomography (DOT) by using the sparsity regularization and expectation-maximization (EM) algorithm. Typical image reconstruction approaches in DOT employ Tikhonov-type regularization, which imposes restrictions on the L(2) norm of the optical properties (absorption/scattering coefficients). It tends to cause a blurring effect in the r...
متن کاملMinimal residual method provides optimal regularization parameter for diffuse optical tomography.
The inverse problem in the diffuse optical tomography is known to be nonlinear, ill-posed, and sometimes under-determined, requiring regularization to obtain meaningful results, with Tikhonov-type regularization being the most popular one. The choice of this regularization parameter dictates the reconstructed optical image quality and is typically chosen empirically or based on prior experience...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 26 5 شماره
صفحات -
تاریخ انتشار 2009